Yaping Dan Research Group 但亚平研究组

JI postdoctorate enlisted by national innovative talent program

时间:2019-04-22    作者:NanoLab

     The “all-silicon optoelectronic chip” project led by JI Professor Yaping Dan and jointly participated by another JI postdoctorate Huimin Wen serves to solve the bottleneck problem encountered during the constant downscaling of the feature size of the integrated circuit (IC). As the feature size of the IC is reduced to deep nanometer scale, traditional

metal interconnect has become the main bottleneck restricting the development of IC due to RC delay and heat dissipation. The use of light on silicon wafers to replace traditional copper wires as information transmission media can greatly increase the transmission speed between chips. Therefore, the combination of ICs and photonics, constituting a CMOS-integrated all-silicon optoelectronic chip, is the only way to break the bottleneck. It can fully utilize the advantages of high integration, low cost of ICs and high bandwidth, ultra-fast transmissionrate of photonics.


      The main issue of the silicon-based optoelectronic technology is the integration of light sources with the IC. Silicon is widely known as an indirect bandgap semiconductor that cannot emit light at communication wavelength. At present, the mainstream of the silicon optoelectronics is the hybrid integration. III-V semiconductor lasers (InP, etc.) are applied as the light sources on silicon chip by discrete mounting (Lightspeed, Luxtera, etc.) or wafer bonding processing (Intel, etc.).

The low integration density and high cost of the circuit greatly limit the development of silicon-based optoelectronic technology.


      Earlier research by Professor Yaping Dan’s group successfully generated room temperature silicon light-emitting diode (LED) at communication wavelength by ion implanting rare earth element Er into silicon and performing deep cooling annealing process. The room temperature quantum efficiency reached 14 %. Dr. Xingyan Zhao’s research project will forge ahead the process and integrate the silicon LED light source with CMOS circuits, modulators, photodetectors and optical

waveguides on the same chip to achieve the all-silicon optoelectronic chip. The all-silicon optoelectronic chip will enhance the integration density and lower the cost significantly, which is expected to be a milestone in the development of the communication technology.

      The Postdoctoral Innovative Talent Support Program is a State-level plan established by China’s Ministry of Human Resources and Social Security and the National Postdoctoral Management Committee with the purpose of cultivating high-level innovative young talents with potential of penetrating into the forefront of science and technology on the global level. A total of 400 young postdoctorates were selected this year with engagement of pursuing postdoctoral research. The selected candidate is entitled with a grant of RMB600,000 covering a period of two years.




密院博士后入选2019年度“博士后创新人才支持计划”

       “全硅基光电子芯片”项目由密西根学院但亚平教授主导,文惠敏博士等人共同参与,旨在解决目前集成电路尺寸进一步缩小后遇到的瓶颈问题。随着“摩尔定律”的持续发展,芯片的特征尺寸已经减小到 10 nm 以下,传统金属互连技术由于RC延迟和热耗散成为限制集成电路发展的主要瓶颈。在硅片上用光取代传统铜线作为信息传导介质,可大大提升芯片之间的连接速度。因此,将微电子和光子技术结合起来,构成CMOS集成的全硅基光电子芯片,可充分发挥硅基微电子的高集成度、低成本以及光子极高带宽、超快传输速率的优势,是信息工业发展的必由之路,也是人类科学技术的新挑战。

       硅基光电子技术需要克服的难点主要是集成问题,尤其是硅基光源的集成。众所周知,硅是间接带隙半导体,且禁带宽度大于通讯波段光子能量,因此不能发射通讯波段光波。目前硅光方案主流仍是硅基混合集成,光源使用传统的III-V族材料,采用分立贴装(光迅、Luxtera等)或晶圆键合加工(Intel等)将III-V族的激光器与硅上集成的调制器、波导等加工在一起。电路的集成度低、成本高,极大的限制了硅基光电子技术的发展。

       但亚平教授课题组在前期研究中,通过在硅中掺入稀土元素铒并且进行特种退火工艺处理,成功实现了室温条件下的硅基通讯波段发光二极管(LED),室温量子效率高达14%。赵兴岩博士将进一步深入推进“全硅基光电子芯片”的研究,并将该硅基通讯波段LED与CMOS 电路、光调制器、光探测器和光波导集成在同一片芯片上,实现完全集成的硅基光电子系统,极大的提升硅基光电子芯片的集成度以及性价比,确立我国在该领域的国际领导地位。


       博士后创新人才支持计划简称“博新计划”,是人力资源和社会保障部、全国博士后管委会新设立的一项青年拔尖人才支持计划,旨在加速培养造就一批进入世界科技前沿的优秀青年科技创新人才,是我国培养高层次创新型青年拔尖人才的又一重要举措。“博新计划”结合国家实验室等重点科研基地,瞄准国家重大战略、战略性高新技术和基础科学前沿领域,择优遴选一批应届或新近毕业的优秀博士,专项资助其从事博士后研究工作,争取加速培养一批国际一流的创新型人才。2019年度,“博新计划”遴选400名应届或新近毕业的优秀博士,进入国内博士后设站单位从事博士后研究工作,国家给予每人两年60万元的资助。